

REPORT

NIAGARA FALLS ICE SCULPTURE ART HOTEL

NIAGARA FALLS, ONTARIO

PEDESTRIAN WIND STUDY

RWDI # 2304618

October 13, 2023

SUBMITTED TO

Shenshu Zhang

Principal

szhang@taesarchitects.com

T: 416.800.3284 x203

TAES Architects Inc.

98 Scarsdale Road

Toronto, Ontario M3B 2R7

SUBMITTED BY

Hanqing Wu, Ph.D., P.Eng.

Senior Technical Director / Principal

Hanqing.Wu@rwdi.com

RWDI – Head Office

600 Southgate Drive

Guelph, Ontario N1G 4P6

Jessica Confalone

Project Manager

Jessica.Confalone@rwdi.com

M: 289.952.1833

RWDI – Toronto Office

625 Queen Street West

Toronto, Ontario M5V 2B7

EXECUTIVE SUMMARY

RWDI was retained to conduct a pedestrian wind assessment for the proposed Niagara Falls Ice Sculpture Art Hotel in Niagara Falls, ON. The assessment was based on the wind-tunnel testing conducted for the proposed development under the Existing, Proposed and Future configurations of the site and surroundings. The results were analysed using the regional wind climate records and evaluated against the Niagara Region Pedestrian Wind Criteria for pedestrian comfort (pertaining to common wind speeds conducive to different levels of human activity) and pedestrian safety (pertaining to infrequent but strong gusts that could affect a person's footing). The predicted wind conditions are presented in Figures 1A through 3C, and Table 1, and are summarized as follows:

- The existing wind conditions on and round the site are expected to be suitable for the intended use and meet the wind safety criterion.
- With the proposed building, canopies, screens and landscaping in place, suitable wind conditions are predicted for the main entrances for both the summer and winter seasons.
- The predicted wind conditions are generally appropriate in the summer, except two isolated areas around building corners, where wind speeds may be uncomfortable from time to time.
- An increased number of uncomfortable locations is predicted around building corners and along sidewalks on and around the site during the winter. The wind safety limit is expected to be exceeded at five locations and additional wind control solutions should be developed at later design stages.
- Wind conditions under the Future configuration are predicted to be similar to those for the Proposed configuration.

TABLE OF CONTENTS

EXECUTIVE SUMMARY

1	INTRODUCTION	1
1.1	Project Description	1
1.2	Objectives	1
2	BACKGROUND AND APPROACH	2
2.1	Wind Tunnel Study Model	2
2.2	Meteorological Data	6
2.3	Pedestrian Wind Criteria for Niagara Region	7
2.4	General Wind Flow Mechanisms	8
3	RESULTS AND DISCUSSION	9
3.1	Existing Configuration	9
3.2	Proposed Configuration	9
3.3	Future Configuration	9
4	STATEMENT OF LIMITATIONS	10
5	REFERENCES	12

LIST OF FIGURES

- Figure 1A: Pedestrian Wind Comfort Conditions – Existing Configuration – Summer
- Figure 1B: Pedestrian Wind Comfort Conditions – Proposed Configuration – Summer
- Figure 1C: Pedestrian Wind Comfort Conditions – Future Configuration – Summer

- Figure 2A: Pedestrian Wind Comfort Conditions – Existing Configuration – Winter
- Figure 2B: Pedestrian Wind Comfort Conditions – Proposed Configuration – Winter
- Figure 2C: Pedestrian Wind Comfort Conditions – Future Configuration – Winter

- Figure 3A: Pedestrian Wind Safety Conditions – Existing Configuration – Annual
- Figure 3B: Pedestrian Wind Safety Conditions – Proposed Configuration – Annual
- Figure 3C: Pedestrian Wind Safety Conditions – Future Configuration – Annual

LIST OF TABLES

- Table 1: Pedestrian Wind Comfort and Safety Conditions

1 INTRODUCTION

RWDI was retained to conduct a pedestrian wind assessment for the proposed Niagara Falls Ice Sculpture Art Hotel in Niagara Falls, ON. This report presents the project objectives, approach and the main results from RWDI's assessment and provides conceptual wind control measures, where necessary. Our Statement of Limitations as it pertains to this study can be found in Section 4 of this report.

1.1 Project Description

The proposed development site is bordered by Bender Street, Palmer Avenue and Falls Avenue (Highway 420), with Ontario Avenue through the middle of the site (Image 1). The development will consist of a 17-storey mixed-use building for approximately 75 m in height. The proposed building has trapezoid floor plans and stepped facades, with a large opening along at grade Ontario Avenue.

1.2 Objectives

The objective of the study was to assess the effect of the proposed development on local conditions in pedestrian areas on and around the study site and provide recommendations for minimizing adverse effects, if needed. This quantitative assessment was based on wind speed measurements on a scale model of the project and its surroundings in one of RWDI's boundary-layer wind tunnels. These measurements were combined with the local wind records and compared to appropriate criteria for gauging wind comfort and safety in pedestrian areas. The assessment focused on critical pedestrian areas, including building entrances, public sidewalks and parking spaces.

Image 1: Aerial View of Site and Surroundings (Photo Courtesy of Google™ Earth)

2 BACKGROUND AND APPROACH

2.1 Wind Tunnel Study Model

To assess the wind environment around the proposed project, a 1:300 scale model of the project site and surroundings was constructed for the wind tunnel tests of the following configurations:

- A - Existing: Existing site with existing surroundings (Image 2A),
- B - Proposed: Proposed project with existing surroundings (Image 2B), and,
- C - Future: Proposed project with existing and future surroundings (Image 2C).

The wind tunnel model included all relevant surrounding buildings and topography within an approximate 360m radius around the study site. The wind and turbulence profiles in the atmospheric boundary layer beyond the modelled area were also simulated in RWDI's wind tunnel. The wind tunnel model was instrumented with 66 specially designed wind speed sensors to measure mean and gust speeds at a full-scale height of approximately 1.5m above local grade in pedestrian areas throughout the study site. The placement of wind measurement locations was based on our experience and understanding of the pedestrian usage for this site. Wind speeds were measured for 36 directions in 10-degree increments. The measurements at each sensor location were recorded in the form of ratios of local mean and gust speeds to the mean wind speed at a reference height above the model.

PEDESTRIAN WIND STUDY
NIAGARA FALLS ICE SCULPTURE ART HOTEL

RWDI #2304618
October 13, 2023

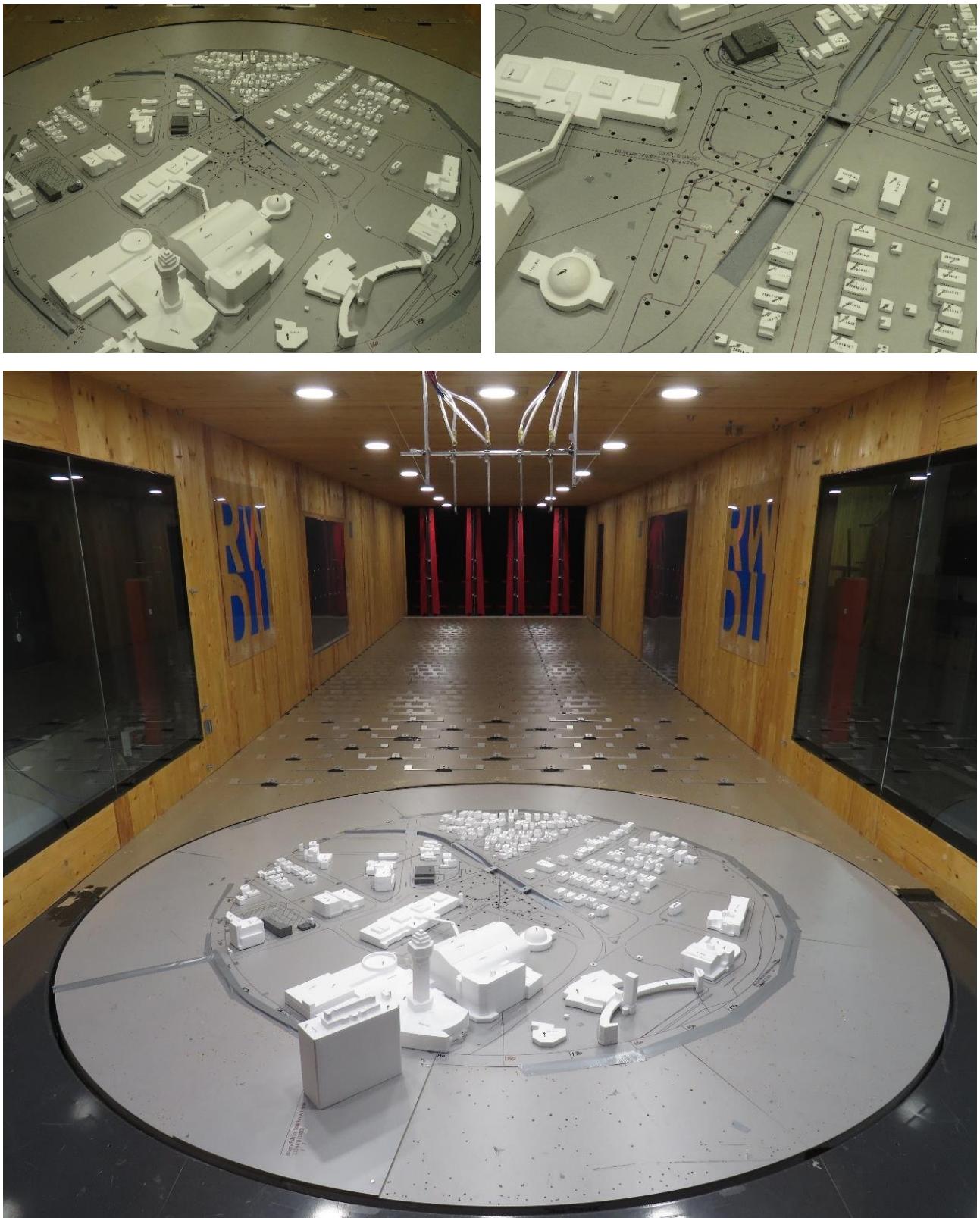
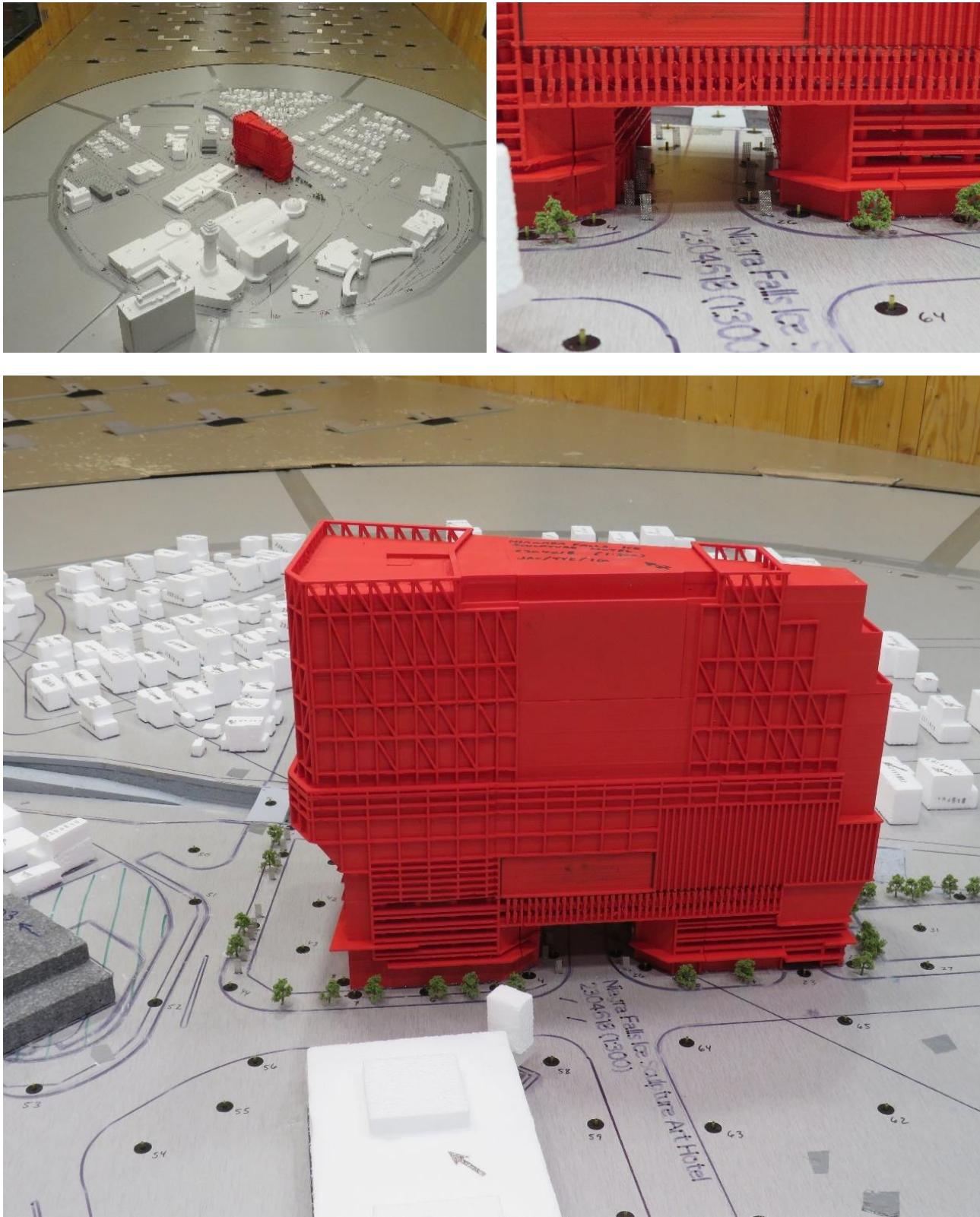



Image 2A: Wind Tunnel Study Model – Existing Configuration

PEDESTRIAN WIND STUDY NIAGARA FALLS ICE SCULPTURE ART HOTEL

RWDI #2304618
October 13, 2023

Image 2B: Wind Tunnel Study Model – Proposed Configuration

PEDESTRIAN WIND STUDY
NIAGARA FALLS ICE SCULPTURE ART HOTEL

RWDI #2304618
October 13, 2023

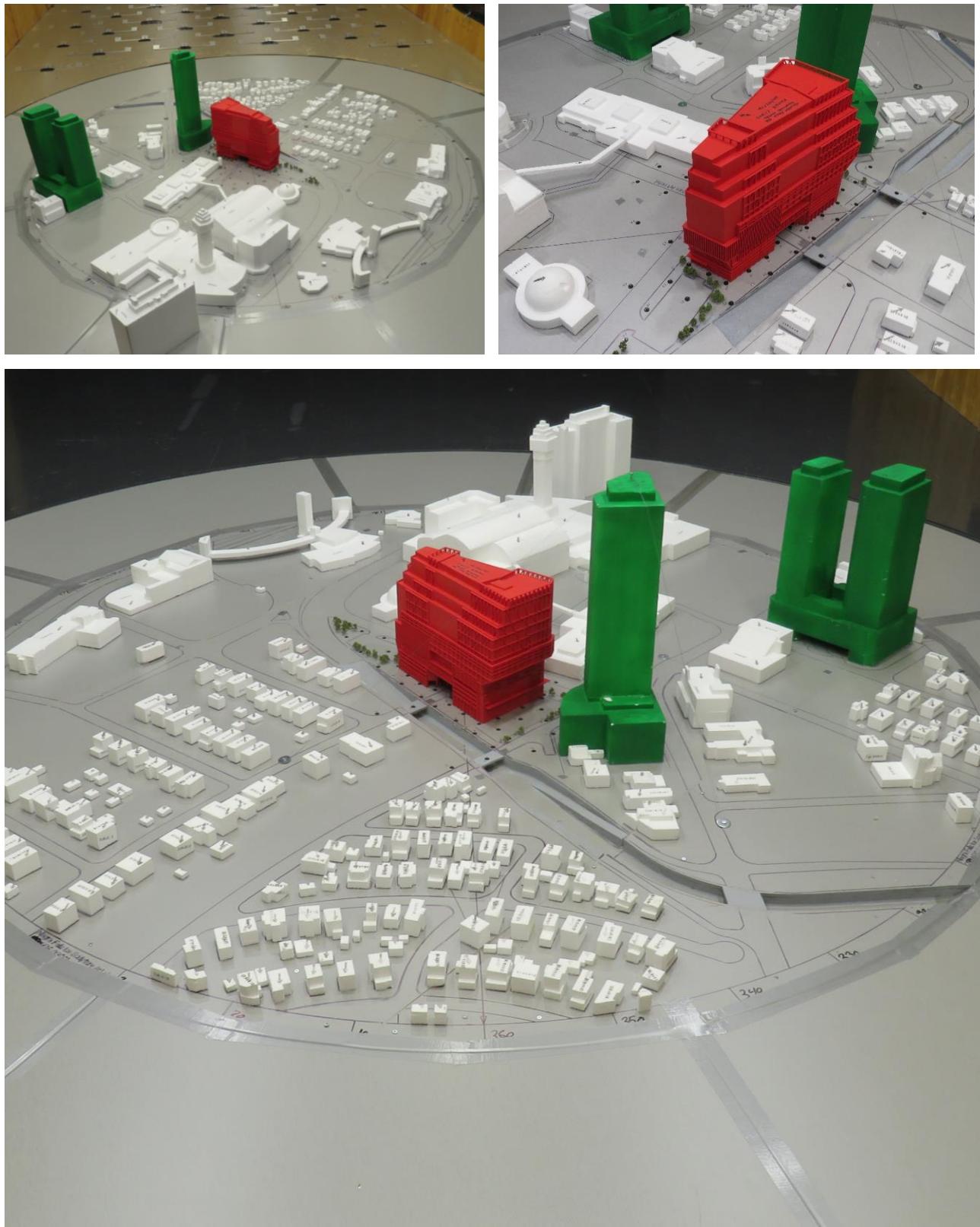
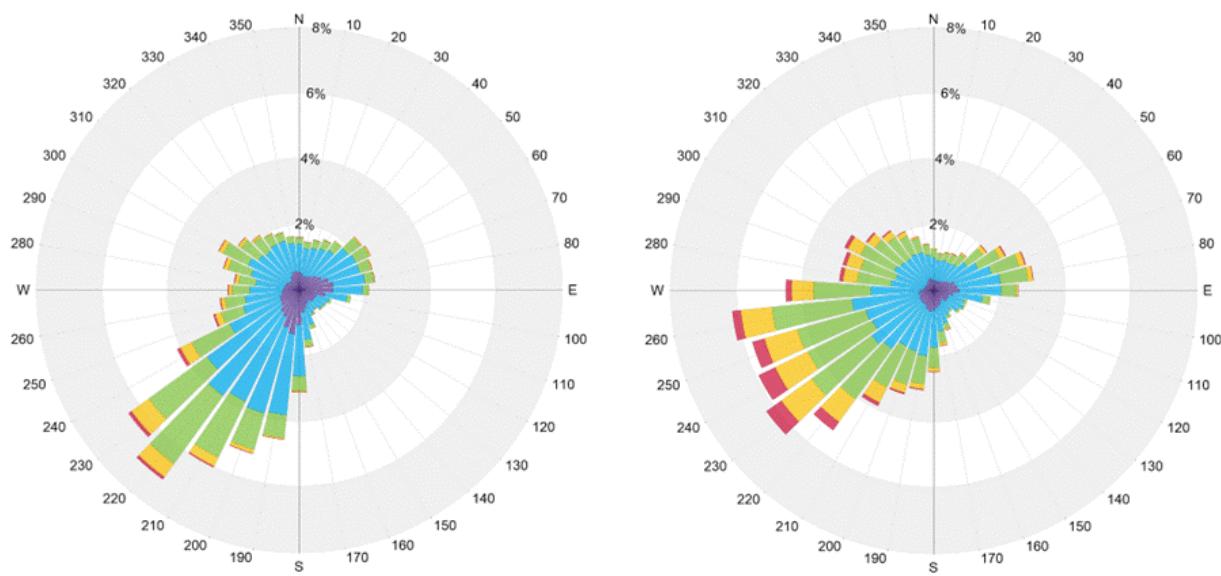



Image 2C: Wind Tunnel Study Model – Future Configuration

2.2 Meteorological Data

Wind statistics recorded at Niagara International Airport in NY between 1991 and 2021, inclusive, were analyzed for the Summer (May through October) and Winter (November through April) seasons. Image 3 graphically depicts the directional distributions of wind frequencies and speeds for these two seasons. Winds from the southwest quadrant are predominant throughout the year as indicated by the wind roses, with secondary winds from the northeast and northwest quadrants. Strong winds of a mean speed greater than 30 km/h measured at the airport (at an anemometer height of 10 m) occur for 3.9% and 12.8% of the time during the summer and winter seasons, respectively, and they are primarily from the southwest direction.

Wind statistics were combined with the wind tunnel data to predict the frequency of occurrence of full-scale wind speeds. The full-scale wind predictions were then compared with the wind criteria for pedestrian comfort and safety.

Wind Speed (km/h)	Probability (%)	
	Summer	Winter
Calm	10.4	5.9
1-10	23.4	16.1
11-20	42.6	36.3
21-30	19.7	28.9
31-40	3.3	9.8
>40	0.6	3.0

Image 3: Directional Distribution of Winds Approaching Niagara Falls International Airport, NY between 1991 and 2021

2.3 Pedestrian Wind Criteria for Niagara Region

Based on pedestrian level wind study terms of reference guide for Niagara Region (dated July 2022), the public realm, streetscapes and public/private outdoor open spaces related to the existing and proposed buildings are to be comfortable for their intended use. The table below describes the minimum criteria for specific locations. The criteria deal with comfort and safety of pedestrians:

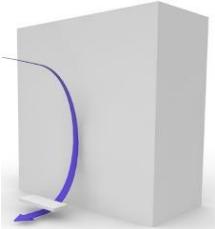
Comfort: Commonly experienced wind speeds have been categorized into ranges based on the activity level of a person that the winds would be conducive to. Lower wind speeds are desirable for passive activities and active pedestrians would be tolerant of higher wind speeds.

Safety: It is important to assess wind conditions in the pedestrian realm from a safety perspective as strong wind gusts can deter safe pedestrian use of outdoor spaces. Wind speeds associated with wind gusts are infrequent but deserve special attention due to their potential impact on pedestrian safety.

Comfort Category	GEM Speed (km/h)	Minimum Occurrence (% of Time)	Description	Area of Application
Sitting	≤ 10	80	Light breezes desired for outdoor seating areas where one can read a paper without having it blown away.	Park benches, restaurant and café seating, balconies, amenity terraces, children's areas, etc. intended for relaxed, and usually seated activities.
Standing	≤ 15	80	Gentle breezes suitable for passive pedestrian activities where a breeze may be tolerated	Main entrances, bus-stops, dog areas, and other outdoor areas where seated activities are not expected.
Walking	≤ 20	80	Relatively high speeds that can be tolerated during intentional walking, running and other active movements.	Sidewalks, parking lots, alleyways, and areas where pedestrian activity is primarily for walking.
Uncomfortable	> 20	20	Strong winds, considered a nuisance for most activities.	Not acceptable in areas with pedestrian access

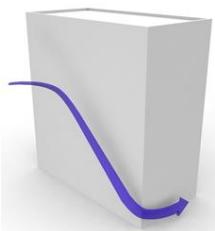
NOTES:

- 1) Gust Equivalent Mean (GEM) speed = maximum of either mean speed or gust speed/1.85. The gust speed can be measured directly from wind tunnel or estimated as mean speed + (3 x RMS speed).
- 2) Comfort calculations are to be based on wind events recorded between 6:00 and 23:00 daily.

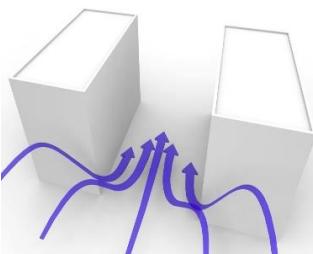

Safety Criterion	Gust Speed (km/h)	Minimum Occurrence Annual	Description	Area of Application
Exceeded	> 90	0.1% (9 hours in a year)	Excessive gust speeds that can adversely affect a pedestrian's balance and footing. Wind mitigation is typically required.	Not acceptable in any area of interest

NOTES:

- 3) Safety calculations are to be based on wind events recorded for 24 hours a day


2.4 General Wind Flow Mechanisms

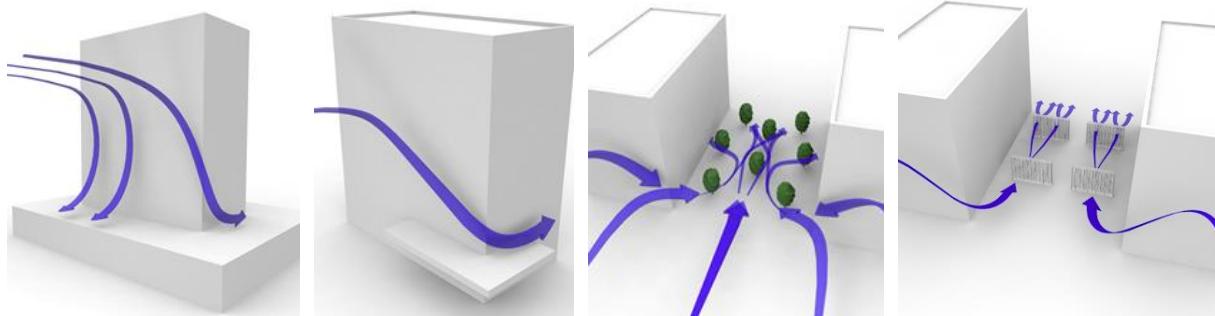
In the discussion of wind conditions, reference is made to the following wind flow mechanisms (Image 4):


DOWNWASHING

Tall buildings tend to intercept the stronger winds at higher elevations and redirect them to the ground level. This is often the main cause for wind accelerations around large buildings at the pedestrian level.

CORNER ACCELERATION

When wind moves around the buildings a localized increase in the wind activity or corner acceleration can be expected around the exposed building corners at pedestrian level. The effect is intensified when the wind approaches at an oblique angle to a tall façade and are deflected down and around the exposed corners.


CHANNELLING EFFECT

Wind flow tends to accelerate through the space between buildings, under bridges or in passages through buildings due to channelling effect caused by the narrow gap. The effect is intensified if the channel is aligned with the predominant wind direction.

Image 4: General Wind Flow Mechanisms

If these building/wind combinations occur for prevailing winds, there is a greater potential for increased wind activity. Design details such as setting back a tall tower from the edges of a podium, deep canopies close to ground level, wind screens, tall trees with dense landscaping, etc. (Image 5) can help reduce wind speeds. The choice and effectiveness of these measures would depend on the exposure and orientation of the site with respect to the prevailing wind directions and the size and massing of the proposed buildings.

Podium/tower setback, canopy, landscaping and wind screens (left to right)

Image 5: Common Wind Control Measures

3 RESULTS AND DISCUSSION

The predicted wind conditions are shown on site plans in Figures 1A through 3C located in the "Figures" section of this report and the associated wind speeds are presented in Table 1, located in the "Tables" section of this report. The following is a detailed discussion of the suitability of the predicted wind conditions for the anticipated pedestrian use of each area of interest.

3.1 Existing Configuration

The existing wind conditions on and round the site are expected to be generally comfortable standing throughout the year, with a few locations comfortable for sitting in the summer (Figure 1A) and for walking in the winter (Figure 2A).

The wind safety criterion is met at all test locations under the Existing configuration (Figure 3A).

3.2 Proposed Configuration

With the proposed building, canopies, screens and landscaping in place, the predicted wind conditions are appropriate in the summer, except two isolated areas around building corners where wind speeds are rated uncomfortable (Locations 2 and 22 in Figure 1B). Wind conditions are comfortable for sitting and suitable for main entrances in the summer (Locations 1, 5 and 8 in Figure 1B).

Suitable wind conditions comfortable for standing are found in the winter around the main entrances (Figure 2B). However, an increased number of uncomfortable locations is predicted around building corners and along sidewalks on and around the site (Figure 2B), due to seasonally stronger wind speeds in the winter.

The wind safety limit is expected to be exceeded at five locations (Locations 22, 32, and 41 through 43 in Figure 3B). Additional wind control solutions should be developed at later design stages.

3.3 Future Configuration

Future buildings are located to the north and northwest of the site, as shown in Image 2C. Wind conditions under the Future configuration (Figures 1C, 2C and 3C) are predicted to be similar to those for the Proposed configuration (Figure 1B, 2B and 3B).

4 STATEMENT OF LIMITATIONS

Limitations

This report was prepared by Rowan Williams Davies & Irwin, Inc. ("RWDI") for TAES Architects Inc ("Client"). The findings and conclusions presented in this report have been prepared for the Client and are specific to the project described herein ("Project"). The conclusions and recommendations contained in this report are based on the information available to RWDI when this report was prepared.

The conclusions and recommendations contained in this report have also been made for the specific purpose(s) set out herein. Should the Client or any other third party utilize the report and/or implement the conclusions and recommendations contained therein for any other purpose or project without the involvement of RWDI, the Client or such third party assumes any and all risk of any and all consequences arising from such use and RWDI accepts no responsibility for any liability, loss, or damage of any kind suffered by Client or any other third party arising therefrom.

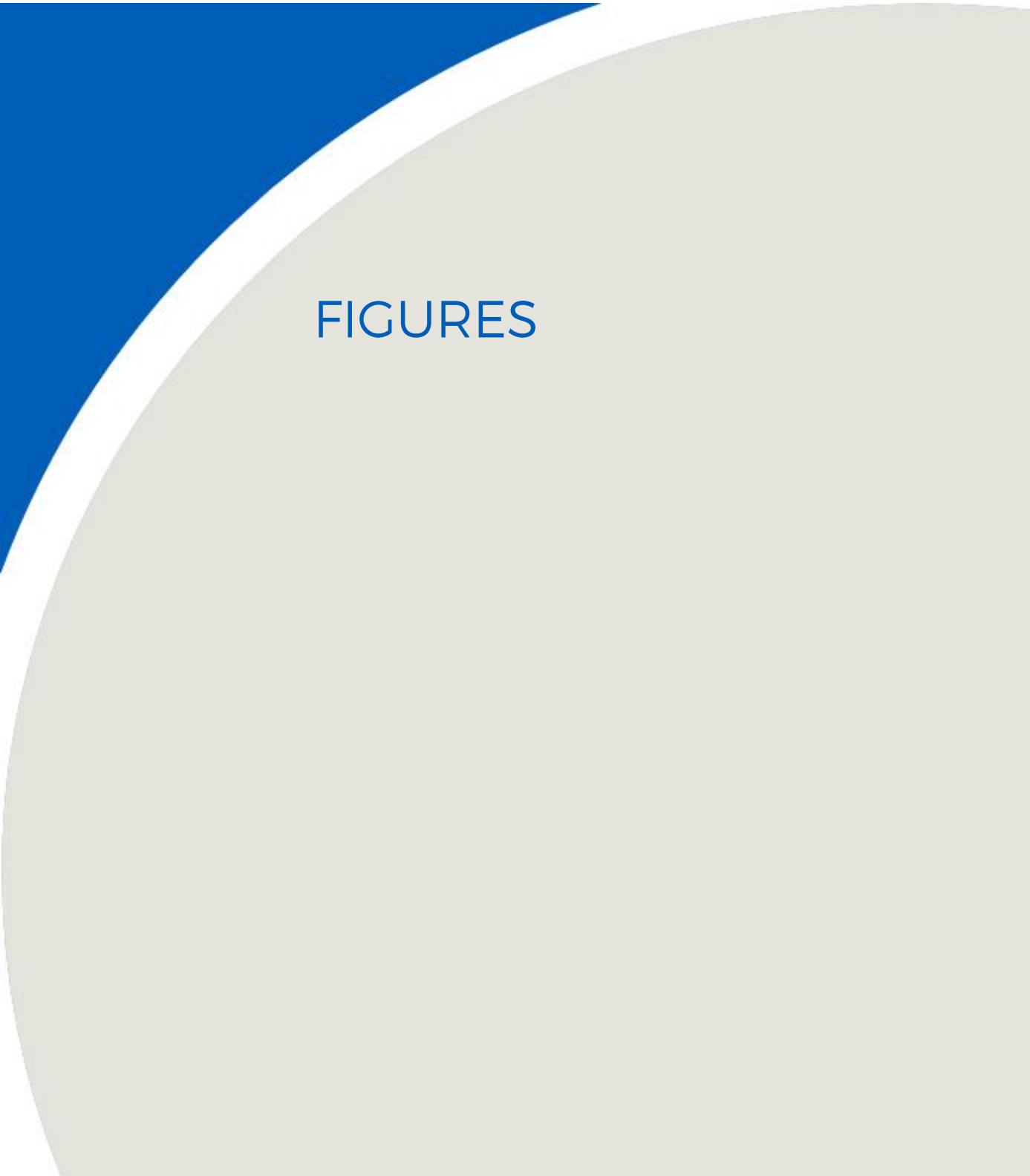
Finally, it is imperative that the Client and/or any party relying on the conclusions and recommendations in this report carefully review the stated assumptions contained herein and to understand the different factors which may impact the conclusions and recommendations provided.

Design Assumptions

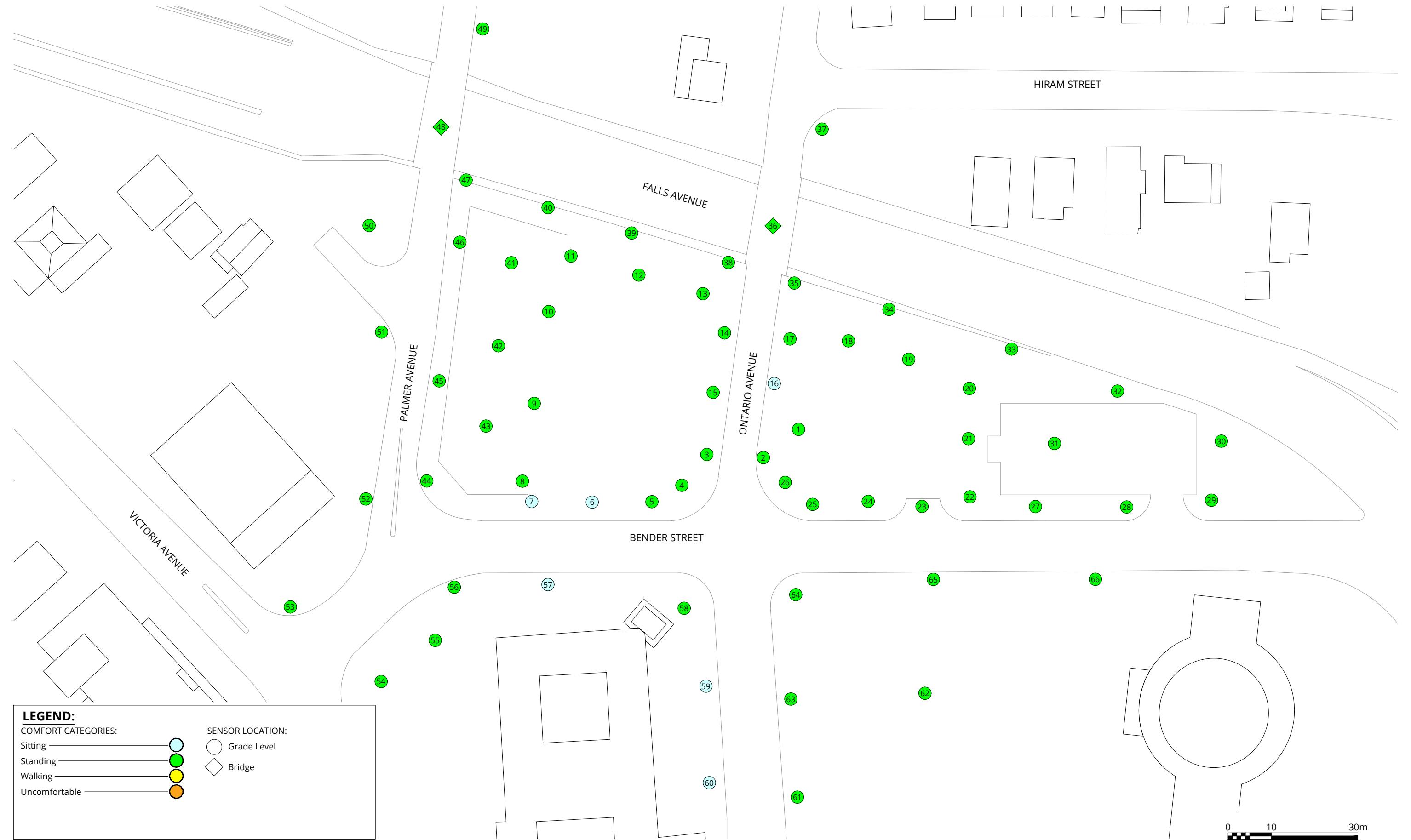
RWDI confirms that the pedestrian wind assessment (the "**Assessment**") discussed herein was performed by RWDI in accordance with generally accepted professional standards at the time when the Assessment was performed and in the location of the Project. No other representations, warranties, or guarantees are made with respect to the accuracy or completeness of the information, findings, recommendations, or conclusions contained in this Report. This report is not a legal opinion regarding compliance with applicable laws.

The findings and recommendations set out in this report are based on the following information disclosed to RWDI. Drawings and information listed below were received from TAES Architects Inc and used to construct the scale model of the proposed development ("**Project Data**").

File Name	File Type	Date Received (dd/mm/yyyy)
BENDER ST NIAGARA FALL 2023-04-14 FOOTPRINT REVISED	pdf	25/04/2023
T2019_Bender St_Niagara Falls 20230313	skp	25/04/2023
A-001a	dwg	12/05/2023
Niagara Hotel	pdf	12/05/2023
T2019025 Bender St Niagara Fall_20230615	pdf	06/07/2023
T2019_Bender St_Niagara Falls 20230609	skp	21/08/2023


The recommendations and conclusions are based on the assumption that the Project Data and Climate Data are accurate and complete. RWDI assumes no responsibility for any inaccuracy or deficiency in information it has received from others. In addition, the recommendations and conclusions in this report are partially based on historical data and can be affected by a number of external factors, including but not limited to Project design, quality of materials and construction, site conditions, meteorological events, and climate change. As such, the conclusions and recommendations contained in this report do not list every possible outcome.

The opinions in this report can only be relied upon to the extent that the Project Data and Project Specific Conditions have not changed. Any change in the Project Data or Project Specific Conditions not reflected in this report can impact and/or alter the recommendations and conclusions in this report. Therefore, it is incumbent upon the Client and/or any other third party reviewing the recommendations and conclusions in this report to contact RWDI in the event of any change in the Project Data and Project Specific Conditions in order to determine whether any such change(s) may impact the assumptions upon which the recommendations and conclusions were made.



5 REFERENCES

1. ASCE Task Committee on Outdoor Human Comfort (2004). *Outdoor Human Comfort and Its Assessment*, 68 pages, American Society of Civil Engineers, Reston, Virginia, USA.
2. Williams, C.J., Hunter, M.A. and Waechter, W.F. (1990). "Criteria for Assessing the Pedestrian Wind Environment," *Journal of Wind Engineering and Industrial Aerodynamics*, Vol.36, pp.811-815.
3. Williams, C.J., Soligo M.J. and Cote, J. (1992). "A Discussion of the Components for a Comprehensive Pedestrian Level Comfort Criteria," *Journal of Wind Engineering and Industrial Aerodynamics*, Vol.41-44, pp.2389-2390.
4. Soligo, M.J., Irwin, P.A., and Williams, C.J. (1993). "Pedestrian Comfort Including Wind and Thermal Effects," *Third Asia-Pacific Symposium on Wind Engineering*, Hong Kong.
5. Soligo, M.J., Irwin, P.A., Williams, C.J. and Schuyler, G.D. (1998). "A Comprehensive Assessment of Pedestrian Comfort Including Thermal Effects," *Journal of Wind Engineering and Industrial Aerodynamics*, Vol.77&78, pp.753-766.
6. Williams, C.J., Wu, H., Waechter, W.F. and Baker, H.A. (1999). "Experiences with Remedial Solutions to Control Pedestrian Wind Problems," *Tenth International Conference on Wind Engineering*, Copenhagen, Denmark.
7. Lawson, T.V. (1973). "Wind Environment of Buildings: A Logical Approach to the Establishment of Criteria", *Report No. TVL 7321*, Department of Aeronautic Engineering, University of Bristol, Bristol, England.
8. Durgin, F. H. (1997). "Pedestrian Level Wind Criteria Using the Equivalent average", *Journal of Wind Engineering and Industrial Aerodynamics*, Vol. 66, pp.215-226.
9. Wu, H. and Kriksic, F. (2012). "Designing for Pedestrian Comfort in Response to Local Climate", *Journal of Wind Engineering and Industrial Aerodynamics*, Vol.104-106, pp.397-407.
10. Wu, H., Williams, C.J., Baker, H.A. and Waechter, W.F. (2004), "Knowledge-based Desk-Top Analysis of Pedestrian Wind Conditions", *ASCE Structure Congress 2004*, Nashville, Tennessee.

A large, abstract graphic element occupies the left side of the page. It consists of a blue triangle pointing towards the top-left corner, a white curved band that follows the triangle's edge, and a large, light gray circle that overlaps both the triangle and the white band, creating a layered effect.

FIGURES

Pedestrian Wind Comfort Conditions

Existing Configuration
Summer (May to October, 6:00 to 23:00)

Niagara Falls Ice Sculpture Art Hotel - Niagara Falls, ON

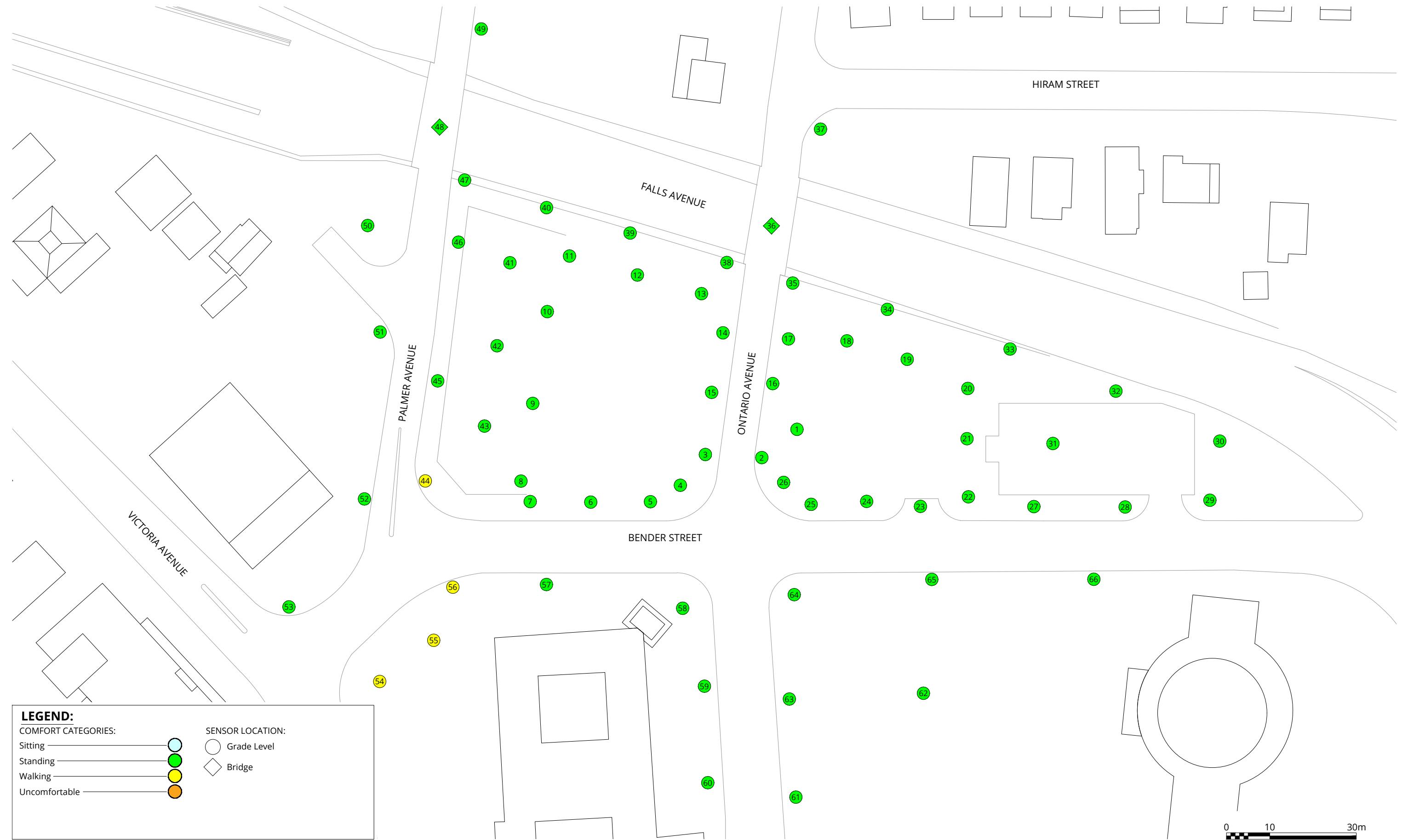
True North	Drawn by: ALJM	Figure: 1A	
	Approx. Scale: 1:800		
Project #2304618	Date Revised: Jul. 31, 2023		



Pedestrian Wind Comfort Conditions

Proposed Configuration
Summer (May to October, 6:00 to 23:00)

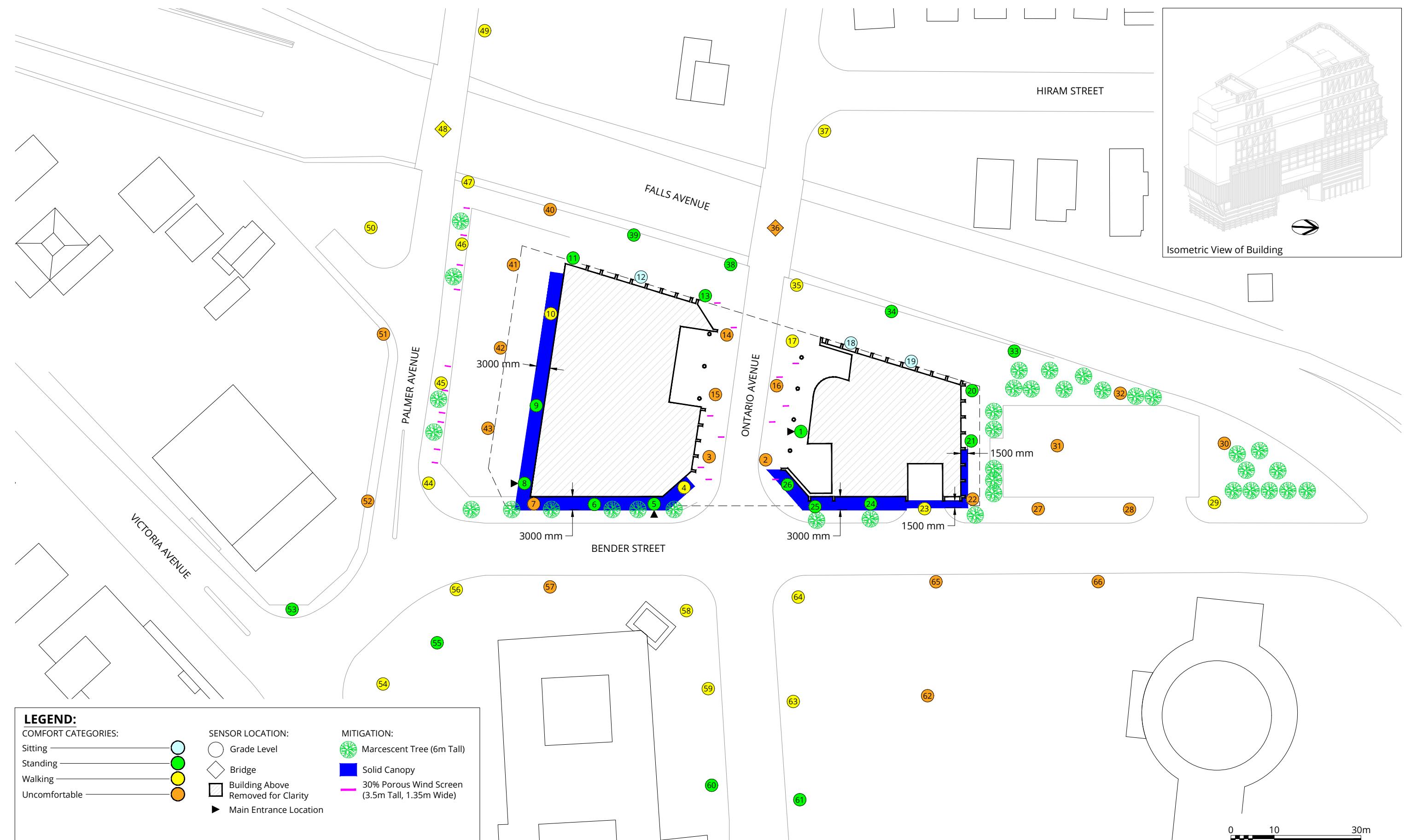
Niagara Falls Ice Sculpture Art Hotel - Niagara Falls, ON



Pedestrian Wind Comfort Conditions

Future Configuration
Summer (May to October, 6:00 to 23:00)

Niagara Falls Ice Sculpture Art Hotel - Niagara Falls, ON

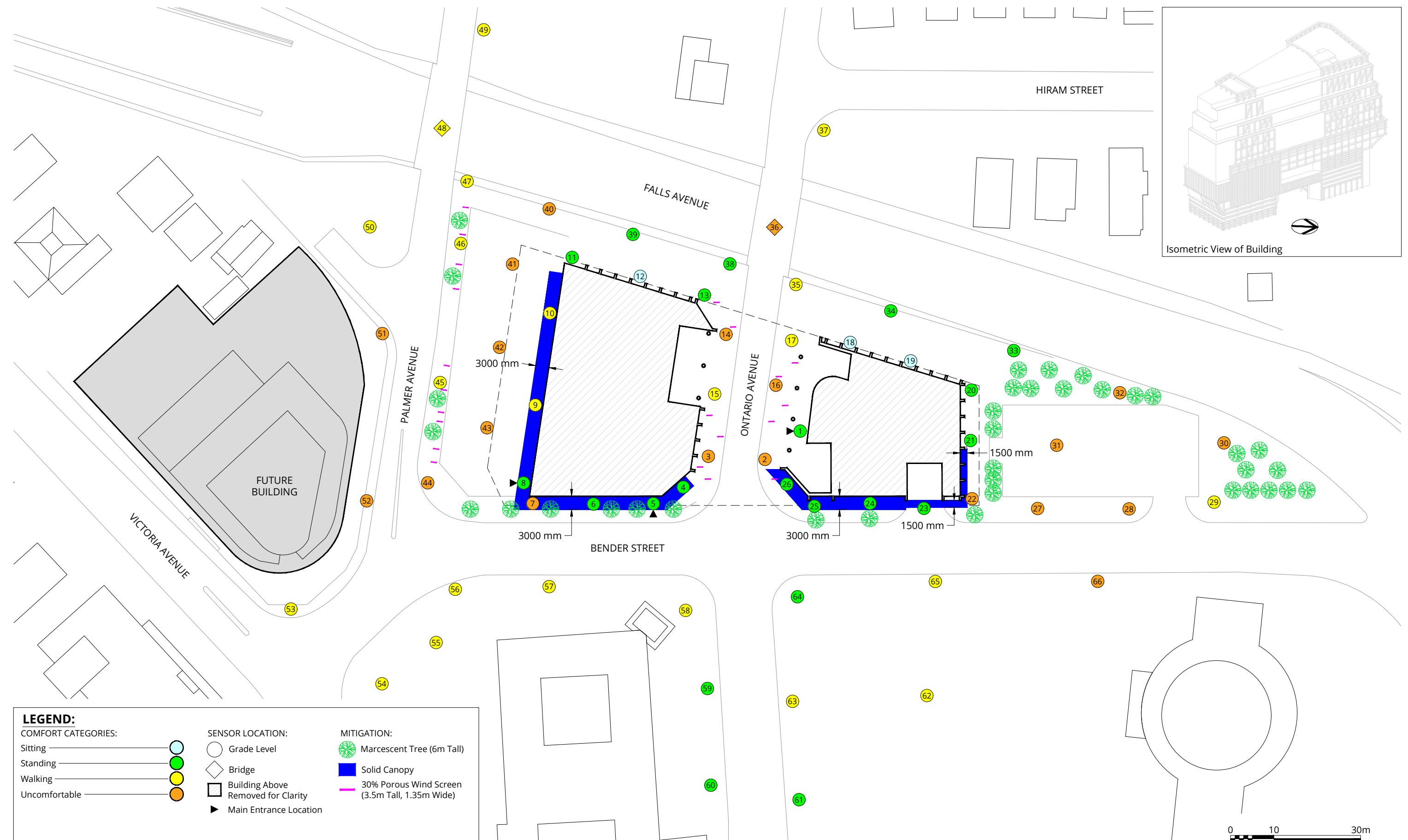


Pedestrian Wind Comfort Conditions

Existing Configuration
Winter (November to April, 6:00 to 23:00)

Niagara Falls Ice Sculpture Art Hotel - Niagara Falls, ON

True North	Drawn by: ALJM	Figure: 2A
	Approx. Scale: 1:800	
	Project #2304618	Date Revised: Jul. 31, 2023



Pedestrian Wind Comfort Conditions
Proposed Configuration
Winter (November to April, 6:00 to 23:00)

Niagara Falls Ice Sculpture Art Hotel - Niagara Falls, ON

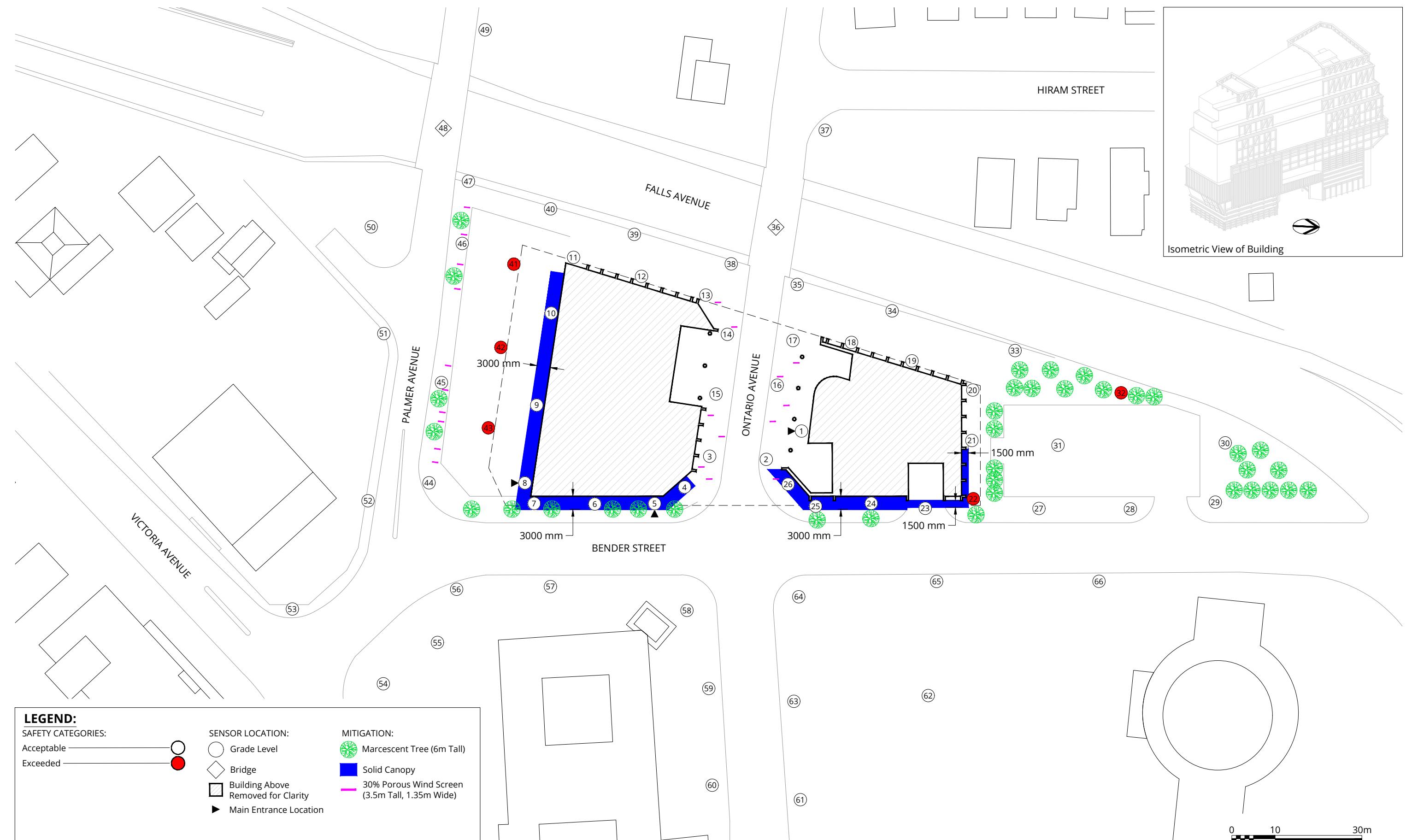
True North
Drawn by: GRE Figure: 2B
Approx. Scale: 1:800
Project #2304618 Date Revised: Oct. 4, 2023

BTW

Pedestrian Wind Comfort Conditions

Future Configuration
Winter (November to April, 6:00 to 23:00)

Niagara Falls Ice Sculpture Art Hotel - Niagara Falls, ON

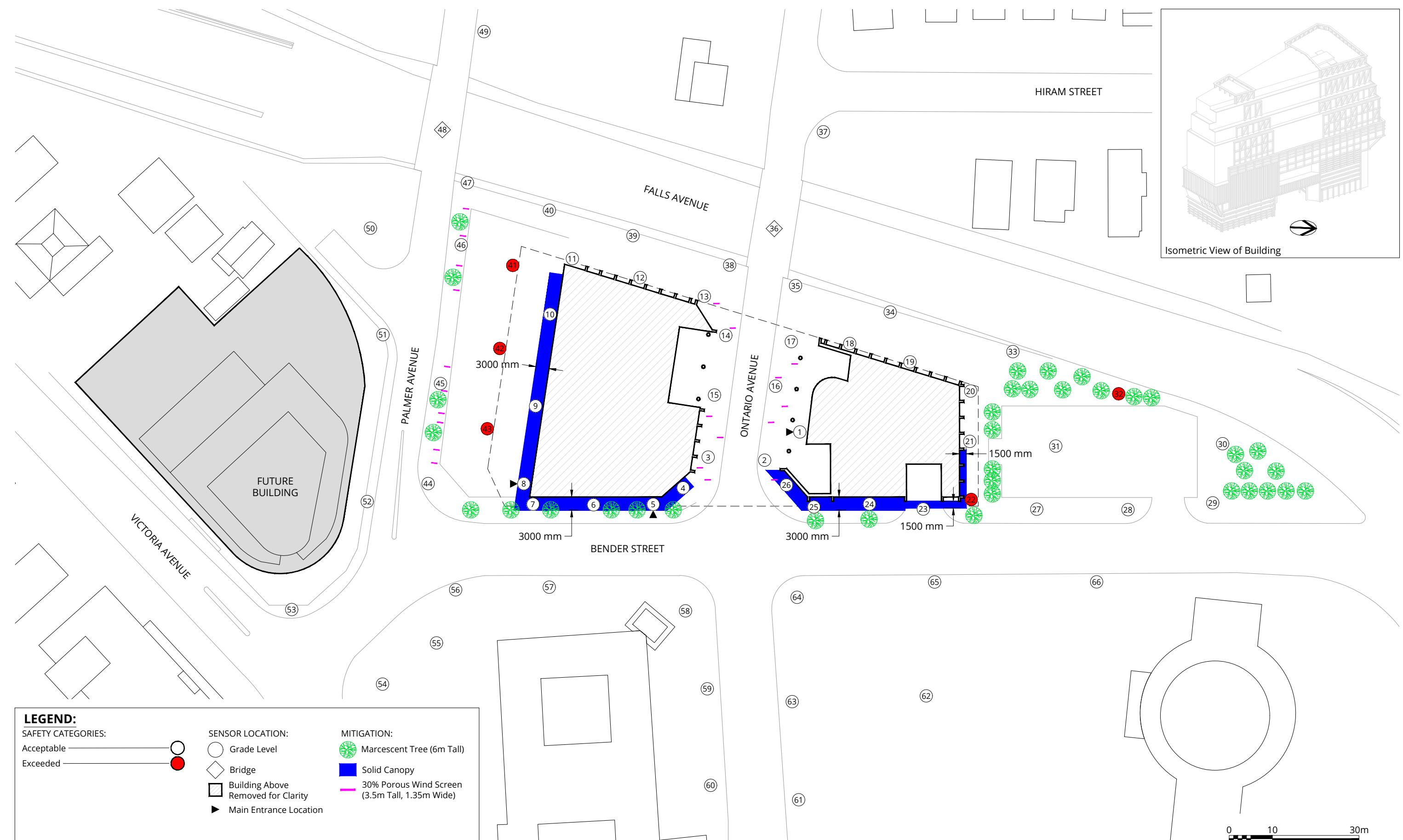

Pedestrian Wind Safety Conditions

Existing Configuration

Annual (January to December, 0:00 to 23:00)

Niagara Falls Ice Sculpture Art Hotel - Niagara Falls, ON

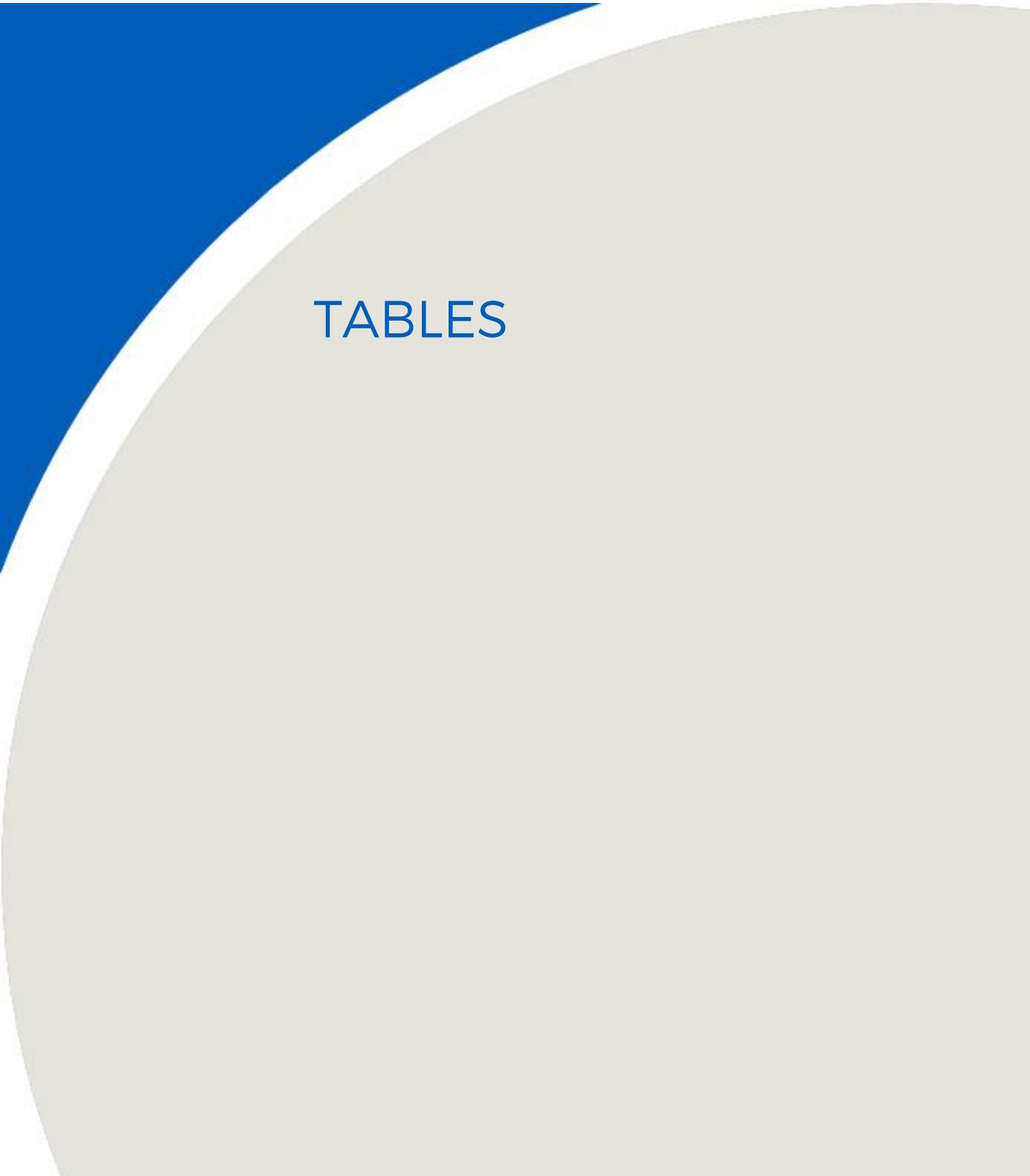
True North	Drawn by: ALJM	Figure: 3A
	Approx. Scale: 1:800	
	Project #2304618	Date Revised: Jul. 31, 2023


Pedestrian Wind Safety Conditions

Proposed Configuration
Annual (January to December, 0:00 to 23:00)

Niagara Falls Ice Sculpture Art Hotel - Niagara Falls, ON

True North
Drawn by: GRE Figure: 3B
Approx. Scale: 1:800
Project #2304618 Date Revised: Oct. 4, 2023


Pedestrian Wind Safety Conditions

Future Configuration
Annual (January to December, 0:00 to 23:00)

Niagara Falls Ice Sculpture Art Hotel - Niagara Falls, ON

True North
Drawn by: GRE Figure: 3C
Approx. Scale: 1:800
Project #2304618 Date Revised: Oct. 4, 2023

A large, abstract graphic element in the background. It consists of a blue triangle pointing towards the top-left corner, a white curved band that follows the triangle's edge, and a light gray curved band that follows the white band's edge. The entire graphic is set against a white background.

TABLES

Table 1: Pedestrian Wind Comfort and Safety Conditions

Location	Configuration	Wind Comfort				Wind Safety	
		Summer		Winter		Annual	
		Speed (km/h)	Rating	Speed (km/h)	Rating	Speed (km/h)	Rating
1	Existing Proposed Future	12 9 10	Standing Sitting Sitting	14 11 12	Standing Standing Standing	52 50 50	Pass Pass Pass
2	Existing Proposed Future	12 21 21	Standing Uncomfortable Uncomfortable	14 27 25	Standing Uncomfortable Uncomfortable	53 85 82	Pass Pass Pass
3	Existing Proposed Future	12 20 20	Standing Walking Walking	14 26 25	Standing Uncomfortable Uncomfortable	52 90 86	Pass Pass Pass
4	Existing Proposed Future	11 12 12	Standing Standing Standing	14 16 15	Standing Walking Standing	50 61 60	Pass Pass Pass
5	Existing Proposed Future	11 10 10	Standing Sitting Sitting	13 13 13	Standing Standing Standing	49 52 58	Pass Pass Pass
6	Existing Proposed Future	10 10 10	Sitting Sitting Sitting	13 12 12	Standing Standing Standing	49 47 49	Pass Pass Pass
7	Existing Proposed Future	10 19 19	Sitting Walking Walking	13 23 21	Standing Uncomfortable Uncomfortable	49 85 84	Pass Pass Pass
8	Existing Proposed Future	11 10 12	Standing Sitting Standing	14 13 15	Standing Standing Standing	52 55 65	Pass Pass Pass
9	Existing Proposed Future	11 10 14	Standing Sitting Standing	14 13 17	Standing Standing Walking	49 53 70	Pass Pass Pass
10	Existing Proposed Future	11 11 13	Standing Standing Standing	14 16 16	Standing Walking Walking	52 65 66	Pass Pass Pass
11	Existing Proposed Future	12 10 10	Standing Sitting Sitting	14 11 12	Standing Standing Standing	52 61 64	Pass Pass Pass
12	Existing Proposed Future	11 7 8	Standing Sitting Sitting	14 8 9	Standing Sitting Sitting	50 39 53	Pass Pass Pass
13	Existing Proposed Future	12 10 10	Standing Sitting Sitting	15 11 12	Standing Standing Standing	53 46 52	Pass Pass Pass
14	Existing Proposed Future	12 18 18	Standing Walking Walking	14 23 22	Standing Uncomfortable Uncomfortable	52 80 76	Pass Pass Pass
15	Existing Proposed Future	11 17 17	Standing Walking Walking	14 21 20	Standing Uncomfortable Walking	51 78 76	Pass Pass Pass
16	Existing Proposed Future	10 17 17	Sitting Walking Walking	13 22 21	Standing Uncomfortable Uncomfortable	47 77 74	Pass Pass Pass
17	Existing Proposed Future	12 14 14	Standing Standing Standing	15 18 17	Standing Walking Walking	54 64 62	Pass Pass Pass
18	Existing Proposed Future	11 6 7	Standing Sitting Sitting	14 7 7	Standing Sitting Sitting	52 36 41	Pass Pass Pass

Table 1: Pedestrian Wind Comfort and Safety Conditions

Location	Configuration	Wind Comfort				Wind Safety	
		Summer		Winter		Annual	
		Speed (km/h)	Rating	Speed (km/h)	Rating	Speed (km/h)	Rating
19	Existing Proposed Future	12 8 8	Standing Sitting Sitting	15 9 9	Standing Sitting Sitting	54 39 40	Pass Pass Pass
20	Existing Proposed Future	11 14 14	Standing Standing Standing	14 15 15	Standing Standing Standing	51 70 68	Pass Pass Pass
21	Existing Proposed Future	12 14 14	Standing Standing Standing	15 15 15	Standing Standing Standing	53 68 65	Pass Pass Pass
22	Existing Proposed Future	12 22 22	Standing Uncomfortable Uncomfortable	15 28 27	Standing Uncomfortable Uncomfortable	52 94 92	Pass Exceeded Exceeded
23	Existing Proposed Future	12 13 12	Standing Standing Standing	15 17 15	Standing Walking Standing	54 62 61	Pass Pass Pass
24	Existing Proposed Future	12 11 11	Standing Standing Standing	15 15 14	Standing Standing Standing	52 58 57	Pass Pass Pass
25	Existing Proposed Future	12 11 10	Standing Standing Sitting	15 14 13	Standing Standing Standing	54 54 53	Pass Pass Pass
26	Existing Proposed Future	11 12 11	Standing Standing Standing	14 14 14	Standing Standing Standing	52 53 52	Pass Pass Pass
27	Existing Proposed Future	12 20 19	Standing Walking Walking	15 25 24	Standing Uncomfortable Uncomfortable	52 84 82	Pass Pass Pass
28	Existing Proposed Future	11 19 19	Standing Walking Walking	15 25 23	Standing Uncomfortable Uncomfortable	52 87 85	Pass Pass Pass
29	Existing Proposed Future	11 15 15	Standing Standing Standing	14 20 18	Standing Walking Walking	51 75 72	Pass Pass Pass
30	Existing Proposed Future	11 17 16	Standing Walking Walking	14 22 21	Standing Uncomfortable Uncomfortable	53 83 78	Pass Pass Pass
31	Existing Proposed Future	12 18 18	Standing Walking Walking	15 22 21	Standing Uncomfortable Uncomfortable	52 83 80	Pass Pass Pass
32	Existing Proposed Future	12 20 20	Standing Walking Walking	15 26 25	Standing Uncomfortable Uncomfortable	55 101 100	Pass Exceeded Exceeded
33	Existing Proposed Future	12 14 14	Standing Standing Standing	15 15 15	Standing Standing Standing	55 62 60	Pass Pass Pass
34	Existing Proposed Future	11 10 9	Standing Sitting Sitting	14 11 11	Standing Standing Standing	53 45 45	Pass Pass Pass
35	Existing Proposed Future	12 15 15	Standing Standing Standing	15 20 18	Standing Walking Walking	54 72 68	Pass Pass Pass
36	Existing Proposed Future	12 17 17	Standing Walking Walking	14 22 21	Standing Uncomfortable Uncomfortable	55 84 81	Pass Pass Pass

Table 1: Pedestrian Wind Comfort and Safety Conditions

Location	Configuration	Wind Comfort				Wind Safety	
		Summer		Winter		Annual	
		Speed (km/h)	Rating	Speed (km/h)	Rating	Speed (km/h)	Rating
37	Existing Proposed Future	12 15 13	Standing Standing Standing	15 19 16	Standing Walking Walking	57 74 65	Pass Pass Pass
38	Existing Proposed Future	12 12 13	Standing Standing Standing	15 15 15	Standing Standing Standing	55 59 61	Pass Pass Pass
39	Existing Proposed Future	11 11 11	Standing Standing Standing	14 13 13	Standing Standing Standing	52 67 60	Pass Pass Pass
40	Existing Proposed Future	12 18 17	Standing Walking Walking	14 26 22	Standing Uncomfortable Uncomfortable	52 86 78	Pass Pass Pass
41	Existing Proposed Future	12 19 20	Standing Walking Walking	15 26 24	Standing Uncomfortable Uncomfortable	54 94 95	Pass Exceeded Exceeded
42	Existing Proposed Future	12 18 21	Standing Walking Uncomfortable	14 22 26	Standing Uncomfortable Uncomfortable	54 99 104	Pass Exceeded Exceeded
43	Existing Proposed Future	12 19 24	Standing Walking Uncomfortable	15 23 28	Standing Uncomfortable Uncomfortable	57 106 105	Pass Exceeded Exceeded
44	Existing Proposed Future	13 17 19	Standing Walking Walking	16 20 24	Walking Walking Uncomfortable	59 89 82	Pass Pass Pass
45	Existing Proposed Future	12 13 15	Standing Standing Standing	14 16 18	Standing Walking Walking	54 63 76	Pass Pass Pass
46	Existing Proposed Future	12 15 15	Standing Standing Standing	14 19 18	Standing Walking Walking	51 66 68	Pass Pass Pass
47	Existing Proposed Future	11 15 14	Standing Standing Standing	14 19 17	Standing Walking Walking	49 66 61	Pass Pass Pass
48	Existing Proposed Future	11 15 14	Standing Standing Standing	14 19 16	Standing Walking Walking	50 73 61	Pass Pass Pass
49	Existing Proposed Future	12 15 14	Standing Standing Standing	15 19 17	Standing Walking Walking	55 75 71	Pass Pass Pass
50	Existing Proposed Future	12 17 17	Standing Walking Walking	14 20 20	Standing Walking Walking	52 79 81	Pass Pass Pass
51	Existing Proposed Future	11 17 22	Standing Walking Uncomfortable	13 21 25	Standing Uncomfortable Uncomfortable	48 76 87	Pass Pass Pass
52	Existing Proposed Future	12 17 20	Standing Walking Walking	15 21 25	Standing Uncomfortable Uncomfortable	56 71 83	Pass Pass Pass
53	Existing Proposed Future	12 13 15	Standing Standing Standing	15 15 20	Standing Standing Walking	58 61 76	Pass Pass Pass
54	Existing Proposed Future	13 13 13	Standing Standing Standing	17 16 17	Walking Walking Walking	61 57 66	Pass Pass Pass

Table 1: Pedestrian Wind Comfort and Safety Conditions

Location	Configuration	Wind Comfort				Wind Safety	
		Summer		Winter		Annual	
		Speed (km/h)	Rating	Speed (km/h)	Rating	Speed (km/h)	Rating
55	Existing Proposed Future	14 12 12	Standing Standing Standing	18 15 16	Walking Standing Walking	63 53 60	Pass Pass Pass
56	Existing Proposed Future	13 16 16	Standing Walking Walking	17 18 19	Walking Walking Walking	61 73 68	Pass Pass Pass
57	Existing Proposed Future	9 18 17	Sitting Walking Walking	11 22 20	Standing Uncomfortable Walking	42 89 86	Pass Pass Pass
58	Existing Proposed Future	12 16 14	Standing Walking Standing	14 19 16	Standing Walking Walking	54 72 62	Pass Pass Pass
59	Existing Proposed Future	10 14 13	Sitting Standing Standing	13 16 15	Standing Walking Standing	47 68 63	Pass Pass Pass
60	Existing Proposed Future	10 12 11	Sitting Standing Standing	13 14 13	Standing Standing Standing	51 57 51	Pass Pass Pass
61	Existing Proposed Future	12 13 12	Standing Standing Standing	15 15 15	Standing Standing Standing	57 59 56	Pass Pass Pass
62	Existing Proposed Future	12 17 16	Standing Walking Walking	15 21 19	Standing Uncomfortable Walking	55 83 80	Pass Pass Pass
63	Existing Proposed Future	11 15 14	Standing Standing Standing	14 17 16	Standing Walking Walking	53 72 69	Pass Pass Pass
64	Existing Proposed Future	12 13 12	Standing Standing Standing	15 16 14	Standing Walking Standing	52 60 56	Pass Pass Pass
65	Existing Proposed Future	12 16 16	Standing Walking Walking	15 21 20	Standing Uncomfortable Walking	52 75 73	Pass Pass Pass
66	Existing Proposed Future	11 18 18	Standing Walking Walking	15 23 22	Standing Uncomfortable Uncomfortable	54 86 85	Pass Pass Pass

Season	Months	Hours	Comfort Speed (km/h)	Safety Speed (km/h)
Summer	May - October	6:00 - 23:00 for comfort	(20% Seasonal Exceedance)	(0.1% Annual Exceedance)
Winter	November - April	6:00 - 23:00 for comfort	≤ 10	≤ 90 Pass
Annual	January - December	0:00 - 23:00 for safety	11 - 15 16 - 20 > 20	> 90 Exceeded
Configurations	Existing	Existing site and surroundings	Sitting	
Proposed	Proposed	Project with existing surroundings	Standing	
Future	Future	Project with future surroundings	Walking	
			Uncomfortable	